F‐Doped Calcium Silicate Enabling Fast Ion Deposition Kinetics for Highly Reversible Zinc Metal Batteries

Author:

Du Hongxia1,Wang Yuankun2,Liu Xiaomeng2,Wu Xianwen1ORCID,Yan Zhenhua2ORCID,Chen Jun2ORCID

Affiliation:

1. School of Chemistry and Chemistry Engineering Jishou University Jishou 416000 P. R. China

2. State Key Laboratory of Advanced Chemical Power Sources Frontiers Science Center for New Organic Matter Haihe Laboratory of Sustainable Chemical Transformations Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources College of Chemistry Nankai University Tianjin 300071 P. R. China

Abstract

AbstractAqueous zinc ion batteries (AZIBs) are subject to various unwanted side reactions, including dendrite growth, hydrogen evolution, and corrosion passivation, due to the highly active Zn anode. While constructing an artificial interface layer (AIL) can address these problems, the compromise in Zn deposition kinetics is considerable. Herein, F‐doped modified hydrated calcium silicate (F‐CSH) nanosheets are designed to enhance Zn2+ ion deposition kinetics. Combined with theoretical calculations, it is verified that the F‐doped contributes to higher interface adsorption energy with Zn metal and lower ion diffusion barrier, favoring faster charge transfer compared to non‐F‐doped counterparts. Additionally, the strong interaction between zincophilic F and Zn facilitates rapid desolvation of Zn2+ and promotes the deposition between the Zn metal and F‐CSH interphases. As a result, the F‐CSH layer maintains the stability on the Zn surface, enabling fast and reversible Zn deposition. The F‐CSH@Zn anode exhibits a long lifespan of over 2800 h at 5 mA cm−2, while running more than 2500 cycles at a ≈100% Coulombic efficiency. This work highlights the importance of constructing AIL with strong interaction with Zn2+/Zn in improving the interphase kinetics of zinc anode for realizing the stability of AZIBs.

Funder

National Natural Science Foundation of China

Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

Publisher

Wiley

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3