A Generic “Engraving in Aprotic Medium” Strategy toward Stabilized Zn Anodes

Author:

Zou Yuhan1,Su Yiwen1,Qiao Changpeng1,Li Weiping1,Xue Zaikun1,Yang Xianzhong1,Lu Miaoyu1,Guo Wenyi1,Sun Jingyu1ORCID

Affiliation:

1. College of Energy Soochow Institute for Energy and Materials Innovations Light Industry Institute of Electrochemical Power Sources Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P. R. China

Abstract

AbstractZn foil pretreatment is a direct route to alleviating Zn anode instability and maintaining high energy performance in Zn metal batteries. Unfortunately, prevailing methods for achieving an ideal Zn surface texture do not enable durable operation under a large depth of discharge, thus impairing the Zn utilization ratio. Zn etching is a more feasible way to control the surface texture, but this approach remains relatively unexplored. In this study, a general strategy is reported for Zn foil engraving in aprotic media to realize efficient anode pretreatment in terms of stability. These tests are performed using high‐valence metal ions (especially Mo5+) in an aprotic environment as the key etchant to render a homogenously‐distributed, 3D porous architecture on the Zn foil surface. Comprehensive experimental results and theoretical simulations revealed enhanced Zn nucleation and growth. This specially designed electrode exhibited a long lifespan with a large depth of discharge of 88% in symmetric cells. When assembled with a ZnxV2O5 cathode, the constructed cell demonstrated nearly full capacity retention even under stringent conditions (e.g., an N/P capacity ratio of 5.5). This study demonstrates the potential of a Zn etching pretreatment to address the prototypical instability issues of Zn anodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3