In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells

Author:

Guo He1,Yoon Geon Woo1,Li Zi Jia2,Yun Yeonghun3,Lee Sangwook3,Seo You‐Hyun4,Jeon Nam Joong4,Han Gill Sang4,Jung Hyun Suk15ORCID

Affiliation:

1. School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

2. Chint New Energy R&D Center Frontier Technology Dept Haining City Zhejiang Province 314415 China

3. School of Materials Science and Engineering Kyungpook National University (KNU) Daegu 41566 Republic of Korea

4. Division of Advanced Materials Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea

5. SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

AbstractMixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability.

Funder

National Research Foundation of Korea

Korea Evaluation Institute of Industrial Technology

Korea Research Institute of Chemical Technology

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3