Unleashing Photocarrier Transport in Mesoporous Single‐Crystalline LaTiO2N for High‐Efficiency Photocatalytic Water Splitting

Author:

Wang Ran12,He Hanna3,Shi Li4,Du Dayue3,Lin Guoan12,Zhang Chuhong3ORCID,Xu Xiaoxiang12ORCID

Affiliation:

1. Clinical and Central Lab, Putuo People′s Hospital Tongji University Shanghai 200060 China

2. Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 China

3. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute Sichuan University Chengdu 610065 China

4. Jiangsu Key Lab for Organic Electronics and Information Displays & Institute of Advanced Materials School of Materials Science and Engineering Nanjing University of Posts and Telecommunications Nanjing 210023 China

Abstract

AbstractLaTiO2N is a promising narrow‐bandgap semiconductor photocatalyst that shows great promise for water redox reactions. However, its performance is often hindered by fast photocarrier recombination events. Herein, LaTiO2N mesoporous single crystals (MSCs) are successfully fabricated via a topotactic conversion route by using the Ruddlesden–Popper compound NaLaTiO4 as the precursor. The LaTiO2N MSCs are characterized by high crystallinity, abundant mesopores, no grain boundaries (GBs), and exposure of (010) and (101) crystal facets. A facet‐assisted photocarrier separation mechanism is identified for these LaTiO2N MSCs which contributes to the much better photocarrier separation than conventional counterparts. By loading proper cocatalysts, LaTiO2N MSCs serve as an efficient photocatalyst for water‐splitting half‐reactions and are capable of photocatalyzing overall water‐splitting reactions, delivering an impressive apparent quantum efficiency (AQE) as high as 65.07% at 420 ± 20 nm for O2‐evolution and a solar‐to‐hydrogen (STH) efficiency as high as 0.012% for solar‐driven overall water splitting. These findings not only highlight the grain‐boundary‐free MSCs with peculiar crystal‐facet exposure as highly active photocatalysts for particulate photocatalysis but also provide a rational design approach for developing efficient photocatalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Science and Technology Commission of Shanghai Municipality

Fundamental Research Funds for the Central Universities

Nanjing University of Posts and Telecommunications

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3