Enhanced CO2 Adsorption and Conversion in Diethanolamine‐Cu Interfaces Achieving Stable Neutral Ethylene Electrosynthesis

Author:

Lv Zunhang1,Wang Changli1,Liu Weiyi1,Liu Rui1,Liu Yarong1,Feng Xiao1ORCID,Yang Wenxiu1ORCID,Wang Bo1ORCID

Affiliation:

1. Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China

Abstract

AbstractMolecular modifications have shown tremendous potential in boosting the electrochemical CO2 reduction (CO2RR) to ethylene. However, the key mechanisms of modulation at the molecular level remain unclear, especially for the adsorption and activation of key intermediates (e.g., *CO2 and *CO). Here, report that a diethanolamine (DEA)‐modified Cu catalyst can reduce CO2 to ethylene with a faradaic efficiency of ≈50.5% with a partial current density of ≈155.7 mA cm−2 in the neutral conditions, which surpasses the Cu catalyst without molecular modification (≈28.5% and ≈95.6 mA cm−2). Density functional theory calculations demonstrate that DEA on the Cu surface boosts the adsorption and activation of CO2 and the following C–C coupling processes during the CO2RR‐to‐ethylene process. Molecular dynamics simulations suggest that the molecules distant from the Cu site have a CO2 enrichment effect. Operational stability achieved via the introduction of DEA molecules onto ketjen black, which then successively immobilized on the Cu nanoparticles and polytetrafluoroethylene electrodes to obtain a stable tripe‐phase boundary, realizing constant ethylene selectivity for 100 operating hours in a flow cell.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3