Conjugated Imine Polymer Synthesized via Step‐Growth Metathesis for Highly Stable Silicon Nanoparticle Anodes in Lithium‐Ion Batteries

Author:

Martin Trevor R.1ORCID,Rynearson Leah2,Kuller Mackenzie1,Quinn Joseph3,Wang Chongmin3,Lucht Brett2,Neale Nathan R.1ORCID

Affiliation:

1. Chemistry and Nanoscience Center National Renewable Energy Laboratory Golden CO 80401 USA

2. Department of Chemistry University of Rhode Island Kingston RI 02881 USA

3. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA

Abstract

AbstractThis work reports a new method to synthesize polyphenylmethanimine (polyPMI) as a linear or a hyperbranched, conjugated polymer using an aldehyde‐imine metathesis reaction. This work details the reaction mechanisms of this polymerization by characterizing a red‐shift in its absorption spectrum as polymer conjugation length increases and verifies that this optical shift results from extended π‐condensation using density functional theory. This new synthetic approach provides a polymer that can potentially be depolymerized for facile recyclability and is compatible with air‐ and water‐sensitive chemistries. As an example of the utility of this new approach, this work demonstrates that this polymer can be directly grown on silicon nanoparticles to create silicon anodes for lithium‐ion batteries with a high degree of electrochemical interfacial passivation. These silicon anodes exhibit Coulombic efficiencies above 99.9% and can accommodate silicon nanoparticle expansion and contraction during lithiation and delithiation as demonstrated by stable reversible capacities for 500 cycles. Finally, this work demonstrates that polyPMI facilitates the formation of a lithium fluoride rich solid electrolyte interphase that remains chemically and mechanically stable after long term cycling.

Funder

National Renewable Energy Laboratory

U.S. Department of Energy

Vehicle Technologies Office

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3