Lamellar Ionic Liquid Composite Electrolyte for Wide‐Temperature Solid‐State Lithium‐Metal Battery

Author:

Zhang Yafang1,Huang Jiajia1,Liu Huan1,Kou Weijie1,Dai Yan1,Dang Wei1,Wu Wenjia1,Wang Jingtao1,Fu Yongzhu2,Jiang Zhongyi3ORCID

Affiliation:

1. School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China

2. College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China

3. Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China

Abstract

AbstractElectrolytes that can work over a wide temperature range are crucial forsustainable advanced energy systems. Here, a kind of lamellar ionic liquid composite electrolyte (L‐ILCE) is explored through confining ionic liquids (ILs) in ordered interlayer nanochannels of 2D vermiculite framework. It is demonstrated that, within nanochannels, the finely tuned microstructure can induce the rearrangement and crystallinity of ILs, affording L‐ILCE the combined superiorities of liquid electrolyte and solid‐state electrolyte. L‐ILCE exhibits high ionic conductivities (0.09–1.35 × 10−3 S cm−1 at −40 to 100 °C), whereas polymer and inorganic electrolytes usually lose ionic conduction ability below 0 °C. Additionally, L‐ILCE exhibits high transference number (0.89, comparable with single‐ion conductors) and wide electrochemical window (0–5.3 V). LiFePO4||Li and high‐voltage LiNi0.8Mn0.1Co0.1O2||Li cells assembled from L‐ILCEs exhibit highly stable electrochemical performance in −20 to 60 °C. Furthermore, pouch cells (0.1 Ah) exhibit high capacity of 93.8 and 45.0 mAh after 50 cycles along with capacity retention of 97% and 98% at 60 and −20 °C, respectively, as well as excellent flexibility and safety. This study offers promise in the rational design of advanced ion conductors for lithium‐based batteries with wider operating temperatures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3