Enhanced Hydrogen Production in Microwave‐Driven Water‐Splitting Redox Cycles by Engineering Ceria Properties

Author:

Domínguez‐Saldaña Aitor1,Navarrete Laura1,Balaguer María1,Carrillo Alfonso J.1,Santos Joaquín1,García‐Baños Beatriz2,Plaza‐González Pedro2,Catalán‐Martínez David1,Catalá‐Civera José Manuel2,Serra José Manuel1ORCID

Affiliation:

1. Instituto de Tecnología Química Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas Valencia Spain

2. Instituto ITACA Universitat Politècnica de València Valencia Spain

Abstract

AbstractSustainable hydrogen, produced from renewable sources such as solar or wind, plays a decisive role in driving industrial decarbonization. Among hydrogen production technologies, steam electrolysis, and solar‐driven thermochemical cycles using reducible solid oxides show promise but face challenges due to high operation temperatures. Microwave‐driven redox chemical looping enables the direct, contactless electrification of the process, reducing the operation temperature and complexity. Previous works showed that microwaves can efficiently drive reduction/water‐splitting cycles using Gd‐doped ceria at low temperatures (<250 °C), but adjustment of material properties is needed. Here, the key properties of materials are explored that affect the redox mechanism by screening a series of doped ceria materials to enhance microwave‐driven hydrogen production. Evaluation of trivalent dopants (La3+, Gd3+, Y3+, Yb3+, Er3+, and Nd3+) reveals that reduction correlates with lattice and electronic properties. The composition Ce0.9La0.1O2‐δ achieves 1.41 mL g−1, the highest hydrogen production among the studied series. Its narrower bandgap allows for reaching higher conductivity upon microwave‐driven reduction at lower temperatures, while a larger ionic lattice size boosts solid‐state oxygen diffusion. Overall, this research remarks on the critical properties of ceria‐based materials that enhance hydrogen production in microwave‐driven water‐splitting cycles, supporting the design of more efficient materials for sustainable chemical production technology.

Funder

Generalitat Valenciana

Ministerio de Ciencia e Innovación

Conselleria d'Educació, Investigació, Cultura i Esport

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3