High‐Throughput Computing Guided Low/High Index Optical Coupling Layer for Record‐Performance Semitransparent Organic Solar Cells

Author:

Xu Tao1ORCID,Deng Baozhong1ORCID,Zhao Yanglin1ORCID,Wang Zihan2ORCID,Lévêque Gaëtan3ORCID,Lambert Yannick3ORCID,Grandidier Bruno3ORCID,Wang Shenghao2ORCID,Zhu Furong4ORCID

Affiliation:

1. Sino‐European School of Technology Shanghai University Shanghai 200444 China

2. Materials Gerome Institute Shanghai University Shanghai 200444 China

3. Univ. Lille CNRS Centrale Lille Univ. Polytechnique Hauts‐de‐France Junia‐ISEN, UMR 8520 – IEMN Lille 59000 France

4. Department of Physics Research Centre of Excellence for Organic Electronics and Institute of Advanced Materials Hong Kong Baptist University Kowloon Tong Hong Kong China

Abstract

AbstractSemitransparent organic solar cells (ST‐OSCs) can be made in different colors, allowing light to pass through, and yet absorb enough visible and near‐infrared (NIR) light to generate electricity. However, it remains a challenge to achieve high performing ST‐OSCs over the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). This work reports an effort to develop record‐performance ST‐OSCs using a low/high index optical coupling layer (OCL) and a 2D photonic‐structured antireflective (AR) coating. High‐throughput optical screening is used to improve the understanding of OCL structure−performance relationships and the predicting of NIR absorption enhancement for ST‐OSCs. The concurrent use of a low/high index Na3AlF6 (170 nm)/ZnS (110 nm) OCL, identified among about 200 thousand simulated device configurations and a 900 nm pitch‐sized 2D photonic‐structured AR coating, fabricated using nanoimprint lithography, enables the record‐performance ternary PM6:BTP‐eC9:L8‐BO‐based ST‐OSCs, achieving simultaneously a record‐high PCE of 15.2%, a high AVT of 32%, an impressive light utilization efficiency of 4.86%, and a favorable color‐rendering index of 82. The results of the ST‐OSCs demonstrated in this work provide an attractive option for a plethora of applications in self‐powered greenhouses and building‐integrated photovoltaic systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3