Indoloindole‐Based Hole Transporting Material for Efficient and Stable Perovskite Solar Cells Exceeding 24% Power Conversion Efficiency

Author:

Kim Dong Won1ORCID,Choi Kang‐Hoon2,Hong Seung Hwa1ORCID,Kang Hyun‐Sik2,Kwon Ji Eon13,Park Sungjin1,An Byeong‐Kwan2ORCID,Park Soo Young1ORCID

Affiliation:

1. Center for Supramolecular Optoelectronic Materials Department of Materials Science and Engineering Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 South Korea

2. Department of Chemistry The Catholic University of Korea Bucheon‐si 14662 South Korea

3. Functional Composite Materials Research Center Institute of Advanced Composite Materials Korea Institute of Science and Technology (KIST) Jeonbuk 55324 South Korea

Abstract

AbstractThe new concept of hole transporting materials (HTMs) has inspired researchers to develop high‐performing and stable perovskite solar cells (PSCs). In particular, small molecular organic semiconductors have been extensively studied for HTM due to their high reproducibility and easy synthesis. In this work, a novel linear‐type series of indoloindole (IDID)‐based hole transporting materials comprising a fluorinated IDID core(IDIDF) and multiple thiophene rings is developed. The structure‐property relationship in the IDIDF derivatives is investigated systematically by changing the alkyl position and length of the backbone. The intrinsic properties of the material are significantly different depending on the alkyl position of inner thiophene ring. The optimized material exhibits improved solubility, favorable molecular packing patterns, and superior hole mobility. The champion PSCs using the optimum molecule, IDIDF2, yield a power conversion efficiency of 23.16% in non‐doped and 24.24% in doped conditions, which represent one of the highest performances in n‐i‐p planar device configuration. For the first time, the IDIDF2‐based PSCs achieve outstanding thermal and moisture stabilities under thermal aging (85 °C) and relative humidity of 85%, respectively, for 1500 h.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3