Affiliation:
1. Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
2. Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
3. Department of Materials Science and Engineering University of California Berkeley Berkeley CA 94720 USA
4. The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Abstract
AbstractNonaqueous carbonate electrolytes are commonly used in commercial lithium‐ion battery (LIB). However, the sluggish Li+ diffusivity and high interfacial charge transfer resistance at low temperature (LT) limit their wide adoption among geographical areas with high latitudes and altitudes. Herein, a rational design of new electrolytes is demonstrated, which can significantly improve the low temperature performance below −20 °C. This electrolyte is achieved by tailoring the chemical structure, i.e., altering the fluorination position and the degree of fluorination, of ethyl acetate solvent. It is found that fluorination adjacent to the carbonyl group or high degree of fluorination leads to a stronger electron‐withdrawing effect, resulting in low atomic charge on the carbonyl oxygen solvating sites, and thus low binding energies with Li+ ions at LT. The optimal electrolyte 2,2,2‐trifluoroethyl acetate (EA‐f) shows significantly improved cycle life and C‐rate of a NMC622/graphite cell when cycled at −20 °C and −40 °C, respectively. In addition to superior LT performance, the electrolyte is nonflammable and tolerant for high voltage charging all owing to its fluorine content. This work provides guidance in designing next‐generation electrolytes to address the critical challenge at subzero temperatures.
Funder
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Vehicle Technologies Office
Office of Science
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献