High‐Throughput Ammonia Production from Nitrate Using Liquid Metal Synthesized Bismuth Nano‐Catalyst

Author:

Nazari Sahar1,Sun Jing1,Baharfar Mahroo1,Poulin Philippe2,Kalantar‐Zadeh Kourosh3,Jalili Ali (Rouhollah)1ORCID,Esrafilzadeh Dorna4

Affiliation:

1. School of Chemical Engineering University of New South Wales (UNSW) Sydney Sydney NSW 2052 Australia

2. Centre de Recherche Paul Pascal−CNRS University of Bordeaux Pessac 33600 France

3. School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia

4. School of Biomedical Engineering University of New South Wales (UNSW) Sydney NSW 2052 Australia

Abstract

AbstractThe implementation of renewable energy sources to electrify ammonia (NH3) production is identified as a critical approach for achieving successful decarburization in the pursuit of a more sustainable future. A liquid metal‐based method is presented for synthesizing bismuth (Bi) nano‐electrocatalysts, enabling efficient and sustainable ammonia production via nitrate electroreduction. Bi‐metal precipitated from a gallium liquid metal alloy yields solution‐processable Bi and oxide with controllable nanostructures such as nanosheets, nanotubes, and nanoparticles. Combining Bi nano‐electrocatalysts and graphene liquid crystals creates self‐assembling layered electrocatalytic systems. Integrating 3D printing technology allows for precise control over the geometry, microporosity, and number of deposited layers of the electrocatalytic scaffold electrode, resulting in improved mass transport properties, durability, and the prevention of catalyst detachment. Consequently, the ammonia production rate reaches 400 nmol s−1 cm−2, with a Faradaic efficiency of over 90% and current densities exceeding 350 mA cm−2. These numbers indicate the excellent scalability potential of the proposed electrocatalytic system.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3