Affiliation:
1. Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 China
2. College of New Energy Institute of New Energy Science and Technology School of Future Hydrogen Energy Technology Zhengzhou University of Light Industry Zhengzhou 450001 China
Abstract
AbstractThe development of highly active and robust non‐noble‐metal electrocatalysts for alkaline hydrogen evolution reaction (HER) at industrial‐level current density is the key for industrialization of alkaline water electrolysis. Herein, a superhydrophilic self‐supported Ni/Y2O3 heterostructural electrocatalyst is constructed by a high‐temperature selective reduction method, which demonstrates excellent catalytic performance for alkaline HER at high current density. Concretely, this catalyst can drive 10 mA cm−2 at a low overpotential of 61.1 ± 3.7 mV, with a low Tafel slope of 52.8 mV dec−1. Moreover, it also shows outstanding long‐term durability at high current density of 1000 mA cm−2 for 500 h in 1 m KOH, evidently exceeding the metallic Ni and Pt/C(20%) catalysts. The superior HER activity can be attributed to the multi‐interface engineering of the Ni/Y2O3 electrode. Construction of Ni/Y2O3 heterogeneous interface with dual active sites lowers the energy barrier of water dissociation and optimizes the hydrogen adsorption energy, thus synergistically accelerating the overall HER kinetics. Also, its superhydrophilic self‐supported electrode structure with the firm electrocatalyst‐substrate interface and weakened electrocatalyst‐bubble interfacial force ensures rapid charge transfer, prevents catalyst shedding, and expedites the H2 gas bubble release timely, further enhancing the catalytic activity and stability at high current density.
Funder
National Natural Science Foundation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献