Data‐Driven Virtual Material Analysis and Synthesis for Solid Electrolyte Interphases

Author:

Rajagopal Deepalaxmi12ORCID,Koeppe Arnd12ORCID,Esmaeilpour Meysam2ORCID,Selzer Michael12ORCID,Wenzel Wolfgang2ORCID,Stein Helge3ORCID,Nestler Britta12ORCID

Affiliation:

1. Institute of Applied Materials (IAM‐MMS) Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany

2. Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

3. Helmholtz Institute Ulm Lise‐Meitner Str. 16 89081 Ulm Germany

Abstract

AbstractSolid electrolyte interphases (SEIs) form as reduction products at the electrodes and strongly affect battery performance and safety. Because SEI formation poses a highly nonlinear, complex multi‐physics problem over various lengths and time scales, traditional modeling approaches struggle to characterize SEI evolution solely with existing physical properties. To improve the characterization of SEIs, it proposes a data‐driven strategy for a virtual material design that learns to represent and characterize SEI formation with physical and data‐driven properties from kinetic Monte Carlo simulations. A Variational AutoEncoder with a property regressor learns data‐driven properties, which represent SEI configurations and correlate with physical target properties. This new neural network design encodes the high‐dimensional structural and reaction spaces into a lower‐dimensional latent space, while the property regressor orders the latent space by physical target properties. The model achieves high correlation scores between target and predicted properties from latent representations, thereby proving that the data‐driven properties enrich the expressiveness of SEI characterizations.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz Association

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3