Continuous Production of Ethylene and Hydrogen Peroxide from Paired Electrochemical Carbon Dioxide Reduction and Water Oxidation

Author:

Mavrikis Sotirios12ORCID,Nieuwoudt Matthian1,Göltz Maximilian3ORCID,Ehles Sophie1,Körner Andreas4ORCID,Hutzler Andreas4ORCID,Fossy Emeric1,Zervas Andreas5,Brai Oshioriamhe1,Wegener Moritz6,Doerrfuss Florian6,Bouwman Peter6ORCID,Rosiwal Stefan3ORCID,Wang Ling2ORCID,Ponce de León Carlos1ORCID

Affiliation:

1. Electrochemical Engineering Laboratory Energy Technology Research Group Faculty of Engineering and Physical Sciences University of Southampton Highfield Campus University Road Southampton SO17 1BJ UK

2. National Centre for Advanced Tribology at Southampton (nCATS) Faculty of Engineering and Physical Sciences University of Southampton Highfield Campus University Road Southampton SO17 1BJ UK

3. Chair of Materials Science and Engineering for Metals Faculty of Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany

4. Forschungszentrum Jülich GmbH Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11) Cauerstraße 1 91058 Erlangen Germany

5. Department of Civil Engineering University of Patras Patras 26500 Greece

6. Schaeffler Technologies AG & Co. KG Industriestraße 1–3 91074 Herzogenaurach Germany

Abstract

AbstractPaired electrolysis offers an auspicious strategy for the generation of high‐value chemicals, at both the anode and cathode, in an integrated electrochemical reactor. Through efficient electron utilization, routine product misuse at overlooked electrodes can be prevented. Here, an original paired electrosynthetic system is reported that can convert CO2 to ethylene (C2H4) at the cathode, and water to hydrogen peroxide (H2O2) at the anode under a single pass of electric charge. Amongst various investigated copper (Cu) nanomorphologies, the bespoke mixed Cu nanowire/nanoparticle catalyst recorded a peak C2H4 Faraday efficiency (FE) of 60% following 370 h of electrolysis at 200 mA cm−2, while the tailored boron‐doped diamond (BDD) anode accumulated an unprecedented ≈1% w/w of H2O2 in 4 m K2CO3 upon applying 300 mA cm−2 for 10 h. When paired, the dual C2H4‐H2O2 electrochemical cell attains a combined FE of 120% for 50 h at 200 mA cm−2, a combined energy efficiency (EE) of 69%, and a 50% decrease in the overall electrical energy consumption (EEC) compared to the individual electrosynthesis of C2H4 and H2O2.

Funder

H2020 LEIT Advanced Manufacturing and Processing

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3