Anode‐Less All‐Solid‐State Batteries Operating at Room Temperature and Low Pressure

Author:

Oh Jihoon1ORCID,Choi Seung Ho2,Kim Ji Young2,Lee Jieun1,Lee Taegeun1,Lee Nohjoon1,Lee Taeyong1,Sohn Yeeun1,Chung Woo Jun1,Bae Ki Yoon2,Son Samick2,Choi Jang Wook13ORCID

Affiliation:

1. School of Chemical and Biological Engineering and Institute of Chemical Process Seoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea

2. Advanced Battery Development Team Hyundai Motor Company 150, Hyundaiyeonguso‐ro, Namyang‐eup Hwaseong‐si Gyeonggi‐do 18280 Republic of Korea

3. Department of Materials Science and Engineering Seoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea

Abstract

AbstractAnode‐less all‐solid‐state batteries (ASSBs) are being targeted for next‐generation electric mobility owing to their superior energy density and safety as well as the affordability of their materials. However, because of the anode‐less configuration, it is nontrivial to simultaneously operate the cell at room temperature and low pressure as a result of the sluggish reaction kinetics of lithium (de)plating and the formation of interfacial voids. This study overcomes these intrinsic challenges of anode‐less ASSBs by introducing a dual thin film consisting of a magnesium upper layer with a Ti3C2Tx MXene buffer layer underneath. The Mg layer enables reversible Li plating and stripping at room temperature by reacting with Li via a (de)alloying reaction with a low reaction barrier. The MXene buffer layer maintains the electrolyte‐electrode interface by inhibiting the formation of voids even at low pressure of 2 MPa owing to the high ductility of MXene. This study highlights the importance of a combined chemical and mechanical approach when designing anode‐less electrodes for practical adaptation for anode‐less ASSBs.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Research Foundation of Korea

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3