Affiliation:
1. National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
2. Centre for Atomaterials and Nanomanufacturing School of Science RMIT University Melbourne Victoria 3000 Australia
3. Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
4. Center of Hydrogen Science School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
Abstract
AbstractMetal‐organic frameworks (MOFs) have exhibited encouraging catalytic activity for the oxygen evolution reaction (OER), a crucial process for water electrolysis to produce green hydrogen. Nonetheless, distinguishing the source of catalytic activity and establishing the structure‐composition‐property relationships of MOFs during OER processes remain challenging. Here, for the first time, operando X‐ray absorption spectroscopy (XAS) is utilized to monitor the structural evolution and identify the active components of ferrocene‐based MOFs (Ni‐Fc) for OER. Ligand‐defect‐rich Ni‐Fc is synthesized via the co‐deposition method. After electrochemical activation, Ni‐Fc exhibits superior electrocatalytic activity (228 mV at 10 mA cm−2 in 0.1 m KOH), which is highly competitive compared with state‐of‐the‐art electrocatalysts. Operando XAS analysis and ex‐situ characterizations reveal the structural reconstruction of Ni‐Fc into amorphous NiFe‐catalysts (a‐NiFe) during the activation process, and further into real catalytic phases (a‐NiFe‐C) under catalytic potential greater than 1.45 V (vs RHE). In catalytic phases, in‐situ formed deprotonated and oxygen‐defected Ni oxyhydroxide analogues act as catalytic sites, while Fe hydroxide analogues derived from ligands optimize the electronic structure of Ni sites for improving OER activity. Density functional theory (DFT) analysis indicates a reduced energy barrier in a‐NiFe‐C compared to pristine MOFs, supporting the improved catalytic activity of the latter.
Funder
Science and Technology Commission of Shanghai Municipality
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献