Multifunctional Molecule‐Grafted V2C MXene as High‐Kinetics Potassium‐Ion‐Intercalation Anodes for Dual‐Ion Energy Storage Devices

Author:

Sabaghi Davood1,Polčák Josef23,Yang Hyejung1,Li Xiaodong4,Morag Ahiud14,Li Dongqi1,Nia Ali Shaygan14,Khosravi H Saman1,Šikola Tomáš23,Feng Xinliang14ORCID,Yu Minghao1ORCID

Affiliation:

1. Department of Chemistry and Food & Center for Advancing Electronics Dresden (cfaed) Technische Universität Dresden 01062 Dresden Germany

2. CEITEC‐Central European Institute of Technology Brno University of Technology Purkynova 123 Brno 61200 Czech Republic

3. Faculty of Mechanical Engineering Institute of Physical Engineering Brno University of Technology Technicka 2896/2 Brno 61669 Czech Republic

4. Max Planck Institute of Microstructure Physics D‐06120 Halle (Saale) Germany

Abstract

AbstractConstructing dual‐ion energy storage devices using anion‐intercalation graphite cathodes offers the unique opportunity to simultaneously achieve high energy density and output power density. However, a critical challenge remains in the lack of proper anodes that match with graphite cathodes, particularly in sustainable electrolyte systems using abundant potassium. Here, a surface grafting approach utilizing multifunctional azobenzene sulfonic acid is reported, which transforms V2C MXene into a high‐kinetics K+‐intercalation anode (denoted ASA‐V2C) for dual‐ion energy storage devices. Importantly, the grafted azobenzene sulfonic acid offers extra K+‐storage centers and fast K+‐hopping sites, while concurrently acting as a buffer between V2C layers to mitigate the structural distortion during K+ intercalation/de‐intercalation. These functionalities enable the V2C electrode with significantly enhanced specific capacity (173.9 mAh g−1 vs 121.5 mAh g−1 at 0.05 A g−1), rate capability (43.1% vs 12.0% at 20 A g−1), and cycling stability (80.3% vs 45.2% after 900 cycles at 0.05 A g−1). When coupled with an anion‐intercalation graphite cathode, the ASA‐V2C anode demonstrates its potential in a dual‐ion energy storage device. Notably, the device depicts a maximum energy density of 175 Wh kg−1 and a supercapacitor‐comparable power density of 6.5 kW kg−1, outperforming recently reported Li+‐, Na+‐, and K+‐based dual‐ion devices.

Funder

Deutsche Forschungsgemeinschaft

Technology Agency of the Czech Republic

Sächsisches Staatsministerium für Wissenschaft und Kunst

HORIZON EUROPE Framework Programme

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3