Affiliation:
1. Department of Chemistry and Food & Center for Advancing Electronics Dresden (cfaed) Technische Universität Dresden 01062 Dresden Germany
2. CEITEC‐Central European Institute of Technology Brno University of Technology Purkynova 123 Brno 61200 Czech Republic
3. Faculty of Mechanical Engineering Institute of Physical Engineering Brno University of Technology Technicka 2896/2 Brno 61669 Czech Republic
4. Max Planck Institute of Microstructure Physics D‐06120 Halle (Saale) Germany
Abstract
AbstractConstructing dual‐ion energy storage devices using anion‐intercalation graphite cathodes offers the unique opportunity to simultaneously achieve high energy density and output power density. However, a critical challenge remains in the lack of proper anodes that match with graphite cathodes, particularly in sustainable electrolyte systems using abundant potassium. Here, a surface grafting approach utilizing multifunctional azobenzene sulfonic acid is reported, which transforms V2C MXene into a high‐kinetics K+‐intercalation anode (denoted ASA‐V2C) for dual‐ion energy storage devices. Importantly, the grafted azobenzene sulfonic acid offers extra K+‐storage centers and fast K+‐hopping sites, while concurrently acting as a buffer between V2C layers to mitigate the structural distortion during K+ intercalation/de‐intercalation. These functionalities enable the V2C electrode with significantly enhanced specific capacity (173.9 mAh g−1 vs 121.5 mAh g−1 at 0.05 A g−1), rate capability (43.1% vs 12.0% at 20 A g−1), and cycling stability (80.3% vs 45.2% after 900 cycles at 0.05 A g−1). When coupled with an anion‐intercalation graphite cathode, the ASA‐V2C anode demonstrates its potential in a dual‐ion energy storage device. Notably, the device depicts a maximum energy density of 175 Wh kg−1 and a supercapacitor‐comparable power density of 6.5 kW kg−1, outperforming recently reported Li+‐, Na+‐, and K+‐based dual‐ion devices.
Funder
Deutsche Forschungsgemeinschaft
Technology Agency of the Czech Republic
Sächsisches Staatsministerium für Wissenschaft und Kunst
HORIZON EUROPE Framework Programme
Horizon 2020 Framework Programme
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献