Clustering Bimetallic M–N–C Catalyst: A Synergistic Approach to Advancing Sulfur Conversion Kinetics for High‐Performance Lithium‐Sulfur Batteries

Author:

Wang Xingbo1,Zhang Xiaomin1,Zhang Yongguang2,Wang Jiayi3,Liu Jiabing4,Li Shibin1,Liu Xin4,Jin Mingliang1,Zhao Lingzhi5,Li Gaoran6,Wang Xin13ORCID

Affiliation:

1. South China Academy of Advanced Optoelectronics International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 P. R. China

2. Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China

3. Institute of Carbon Neutrality, Zhejiang Wanli University Ningbo 315100 P. R. China

4. School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 P. R. China

5. Guangdong Provincial Engineering Technology Research Center for Low Carbon and Advanced Energy Materials College of Semiconductor Science and Technology South China Normal University Foshan 528225 P. R. China

6. College of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 P. R. China

Abstract

AbstractLithium–sulfur (Li–S) batteries stand out as a promising candidate for future energy storage, characterized by their notable energy density and affordability. However, the impediments raised by polysulfide shuttling and sluggish reaction kinetics pose substantial challenges to the widespread implementation of this technology. Herein, a unique Fe–Co bimetallic single‐atom‐cluster catalyst (FeCo‐SACC) for Li–S batteries are developed. The synergistic integration of single atoms and clusters guarantees not only a commendable specific catalytic activity but also a high metal loading of up to 25 wt%. Meanwhile, the intermetallic interactions regulate the electronic structure, enabling higher sulfur affinity and faster conversion kinetics. The unique 3D‐ordered mesoporous (3DOM) carbon architecture further affords conducive sulfur accommodation, efficient active site exposure, and facile ion/mass transfer. As a result, facile and stable sulfur electrochemistry is realized, contributing to excellent cyclability over 1000 cycles and rate capability up to 5 C. Decent cell performances can still be achievable under practical criteria, e.g., high sulfur loading of 15 mg cm−2, lean electrolyte of 4.6 µL mg−1, and 1.91‐Ah pouch configuration. This work establishes a novel paradigm for the development of advanced sulfur electrocatalysts and high‐performance Li–S batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3