Unraveling the Spatial Asynchronous Activation Mechanism of Oxygen Redox‐Involved Cathode for High‐Voltage Solid‐State Batteries

Author:

Hu Naifang123ORCID,Zhang Yu‐Han1234ORCID,Yang Yuan1,Wu Hui5,Liu Yuehui1,Hao Congyi1,Zheng Yue123,Sun Deye123,Li Wenru123,Li Jiedong1,Hu Zhiwei6ORCID,Chan Ting‐Shan7,Kao Cheng‐Wei7,Kong Qingyu8,Wang Xiaogang123,Haw Shu‐Chih7,Ma Jun123ORCID,Cui Guanglei1234ORCID

Affiliation:

1. Qingdao Industrial Energy Storage Research Institute Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China

2. Shandong Energy Institute Qingdao 266101 P. R. China

3. Qingdao New Energy Shandong Laboratory Qingdao 266101 P. R. China

4. School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China

5. CAS Key Laboratory of Green Process and Engineering Beijing Key Laboratory of Ionic Liquids Clean Process Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China

6. Max Planck Institute for Chemical Physics of Solids D‐01187 Dresden Germany

7. National Synchrotron Radiation Research Center Hsinchu Taiwan 30076 Republic of China

8. Synchrotron Soleil L'Orme des Merisiers St‐Aubin Gif‐sur‐Yvette 91192 France

Abstract

AbstractLi‐rich layered oxides (LRLO) exhibit significant potential for use in all‐solid‐state lithium batteries (ASSLBs) owing to their high capacities and wide range of operating voltages. However, the practical application of LRLO in ASSLBs is hindered by the severe failure of carrier transport at the solid–solid interface, which subsequently limits the electrochemical activity of these batteries. Here, the spatially asynchronous activation mechanism of the LRLO in ASSLBs is presented. A spectroscopic study extending from the surface into the bulk interior of LRLO indicates that the activation kinetics of anionic oxygen prefers hysteretic delivery over uniform delivery and fast transition metals (TMs) activation. This spatial hetero activation is dominated by the failure of carrier transport at the interface, which is induced by microstructural defects in the composite cathode. This study is expected to facilitate the microstructural design of high‐performance LRLO‐based ASSLBs.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3