Temperature‐Mediated Dynamic Lithium Loss and its Implications for High‐Efficiency Lithium Metal Anodes

Author:

Zhang Shuo12,Ding Jun‐Fan12,Xu Rui12,Xiao Ye12,Yan Chong12,Huang Jia‐Qi123ORCID

Affiliation:

1. School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

2. Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China

3. Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea

Abstract

AbstractLithium (Li) metal has been strongly regarded as the ultimate anode option for next‐generation high‐energy‐density batteries. Nevertheless, the insufficient Coulombic efficiency induced by the extensive active Li loss largely hinders the practical operation of Li metal batteries under wide temperature range. Herein, the temperature‐mediated dynamic growth of inactive Li from −20 to 60°C via titration gas chromatograph measurements is quantitatively decoupled. Combined X‐ray photoelectronic spectroscopy, cryo‐transmission electronic microscopy, and scanning electronic microscopy methods depicted that both solid electrolyte interphase (SEI) characteristics and Li deposition compactness can be profoundly manipulated by working temperature. The elevation of temperature is found to fundamentally aggravate the parasitic reactions and deteriorate the spatial uniformity of SEI, yet promote the lateral growth of Li by kinetic reason. The opposite effects of temperature on SEI properties and Li deposition compactness can properly explain the intricate temperature‐dependent growth rates of SEI‐Li+ and dead Li0 capacity loss observed under titration gas chromatograph measurements. Design implications towards more stable Li metal anodes with higher reversibility can thus be yielded.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3