Superdense Lithium Deposition via Mixed Ionic/Electronic Conductive Interfaces Implanted In Vivo/Vitro for Stable Lithium Metal Batteries

Author:

Ma Changjing12,Jiang Wenlong1,Duan Qiange2,Ning De2,Wang Man3,Wang Jun3,Chen Bingan4,Jiang Haobo5,Yang Chunlei2,Wu Wei2ORCID

Affiliation:

1. College of Information Technology Jilin Normal University Siping 136000 P. R. China

2. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

3. Department of Materials Science and Engineering School of Innovation and Entrepreneurship Southern University of Science and Technology Shenzhen 518055 P. R. China

4. Shenzhen Nashe Intelligent Equipment Co., Ltd. China Merchants Guangming Science Park Shenzhen 518107 P. R. China

5. College of Physics Jilin Normal University Siping 136000 P. R. China

Abstract

AbstractLithium metal batteries specialize in energy density, while the immoderate dendrite growth and solid electrolyte interphase (SEI) proliferation have been impeding their practical application. The key is the regulation of Li+ diffusion/nucleation behaviors toward a dense deposition. Herein, Li9Al4/Li3N energized mixed ionic/electronic conductive (MIEC) interfaces are pre‐implanted in both the surface and bulk of the lithium metal anode. Such MIEC interfaces are activated from the in situ conversion and nano‐alloying reactions between AlN and metallic Li and are uniformly dispersed via facile mechanical kneading. In vitro, MIEC interfaces participate in the formation of an inorganic‐enriched SEI that balances ionic transport, electron blocking, and mechanical strength to guarantee homogeneous ion fluxes and structural integrity. In vivo, a unique nanorod‐array architecture enables a released internal stress and rapid diffusion kinetics, affording a dense and large granular plating manner. As a result, the symmetric cell delivers a striking cumulative capacity of >120000 mAh cm−2 at 20 mA cm−2@20 mAh cm−2 with a prolonged lifespan of over 6000 h. The improved machinability also enables a scalable fabrication of ultrathin foil to achieve a stable high‐areal‐capacity full cell for 320 cycles with enhanced energy density characteristics both gravimetrically and volumetrically.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3