Affiliation:
1. Institute of New‐Energy and Low‐Carbon Technology (INELT) Sichuan University Chengdu Sichuan 610065 China
2. Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu Sichuan 610065 China
3. School of Materials and Energy Southwest University Chongqing 400715 China
4. US‐Pakistan Center for Advanced Studies (USPCAS‐E) National University of Sciences and Technology (NUST) H‐12 Islamabad 44000 Pakistan
5. Materials Science and Engineering Program & Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
Abstract
AbstractThe interrelation is explored between external pressure (0.1, 1, and 10 MPa), solid electrolyte interphase (SEI) structure/morphology, and lithium metal plating/stripping behavior. To simulate anode‐free lithium metal batteries (AF‐LMBs) analysis is performed on “empty” Cu current collectors in standard carbonate electrolyte. Lower pressure promotes organic‐rich SEI and macroscopically heterogeneous, filament‐like Li electrodeposits interspersed with pores. Higher pressure promotes inorganic F‐rich SEI with more uniform and denser Li film. A “seeding layer” of lithiated pristine graphene (pG@Cu) favors an anion‐derived F‐rich SEI and promotes uniform metal electrodeposition, enabling extended electrochemical stability at a lower pressure. State‐of‐the‐art electrochemical performance is achieved at 1MPa: pG‐enabled half‐cell is stable after 300 h (50 cycles) at 1 mA cm−2 rate −3 mAh cm−2 capacity (17.5 µm plated/stripped), with cycling Coulombic efficiency (CE) of 99.8%. AF‐LMB cells with high mass loading NMC622 cathode (21 mg cm−2) undergo 200 cycles with a CE of 99.4% at C/5‐charge and C/2‐discharge (1C = 178 mAh g−1). Density functional theory (DFT) highlights the differences in the adsorption energy of solvated‐Li+ onto various crystal planes of Cu (100), (110), and (111), versus lithiated/delithiated (0001) graphene, giving insight regarding the role of support surface energetics in promoting SEI heterogeneity.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
National Science Foundation
Division of Materials Research
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献