Enhanced Electrochemical Performance of Disordered Rocksalt Cathodes in a Localized High‐Concentration Electrolyte

Author:

Ahmed Ridwan A.1ORCID,Koirala Krishna P.2ORCID,Lee Gi‐Hyeok3ORCID,Li Tianyu4,Zhao Qian5ORCID,Fu Yanbao6ORCID,Zhong Lirong1ORCID,Daddona Joseph D.7ORCID,Zuba Mateusz8ORCID,Siu Carrie8ORCID,Kahvecioglu Ozgenur8ORCID,Battaglia Vincent S.6ORCID,Clément Raphaële J.4ORCID,Yang Wanli3ORCID,Wang Chongmin5ORCID,Xu Wu1ORCID

Affiliation:

1. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99354 USA

2. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99354 USA

3. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Materials Department and Materials Research Laboratory University of California Santa Barbara CA 93106 USA

5. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA

6. Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

7. National Security Directorate Pacific Northwest National Laboratory Richland WA 99354 USA

8. Applied Materials Division Argonne National Laboratory Lemont IL 60439 USA

Abstract

AbstractLithium (Li)‐rich transition metal oxide cathodes with a cation disordered rock salt structure (DRX) are increasingly gaining popularity for advanced Li batteries as they offer high capacity and cost benefits over the commonly used layered Li transition metal oxide cathodes. However, the performance of DRX cathodes and their applications are limited by severe side reactions between the cathode and the state‐of‐the‐art carbonate‐based electrolytes at high voltage of 4.8 V, transition metal dissolution, and structural instability of the cathode particles. In this work, an advanced localized high‐concentration electrolyte (LHCE) is developed to form a stable cathode‐electrolyte interphase and mitigate structural instability of the Li1.13Mn0.66Ti0.21O2 (LMTO) DRX during electrochemical cycling. Li||LMTO half cells with the LHCE demonstrate increased capacity, cycling stability, and superior rate capability compared with cells containing a conventional carbonate electrolyte. For instance, the Li||LMTO cells cycled in LHCE show a higher initial capacity of 205.2 mAh g−1 and a better capacity retention of 72.5% after 200 cycles at a current density of 20 mA g−1 than those with the conventional electrolyte (initial capacity of 187.7 mAh g−1 and capacity retention of 19.9%). This work paves the way to the development of practical DRX cathode‐based high‐energy Li batteries.

Funder

Office of Energy Efficiency and Renewable Energy

Vehicle Technologies Office

U.S. Department of Energy

Pacific Northwest National Laboratory

Lawrence Berkeley National Laboratory

Washington State Department of Commerce

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3