Effect of the Nature of Both Cation and Anion Substitution on the Structural Symmetry of Li‐Rich 3d‐Metal Chalcogenide Electrodes

Author:

Louis Jacques123ORCID,Robert Clara34,Leube Bernhard T.123ORCID,Chaupatnaik Anshuman123ORCID,Sunariwal Neelam5ORCID,Kumar Khagesh5ORCID,Roy Indrani5,Rousse Gwenaëlle123,Cabana Jordi5ORCID,Doublet Marie‐Liesse34ORCID,Tarascon Jean‐Marie123ORCID

Affiliation:

1. Collège de France Chimie du Solide et de l’Énergie UMR 8260, 11 Place Marcelin Berthelot Paris 75231 France

2. Sorbonne Université 4 Place Jussieu Paris 75005 France

3. Réseau Français sur le Stockage Électrochimique de l’Énergie (RS2E) 15 rue Baudelocque Amiens 80039 France

4. Institut Charles Gerhardt Montpellier (ICGM) Univ Montpellier CNRS ENSCM Montpellier 34293 France

5. Cabana Group Department of Chemistry University of Illinois Chicago 845 W. Taylor St., Science and Engineering South Chicago Chicago IL 60607 USA

Abstract

AbstractLi‐rich layered chalcogenides have recently led to better understanding of the anionic redox process and its associated high capacity while providing ways to overcome its practical limitations of voltage fade and irreversibility. This study reports on the feasibility of triggering anionic activity in Li2TiS3, through anionic substitution (Se for S) or cationic substitution (Fe for Ti). Herein, the chalcogenide chemical space is further explored to prepare mono‐substituted Li1.7Ti0.85Mn0.45Ch3 (Ch = S/Se) and doubly substituted cationic and anionic phases (Li1.7Ti0.85Fe0.45S3‐zSez) which crystallize either in the O3‐ or O1‐type structures depending upon substituents. All series show a bell‐shape capacity variation as function of the transition metal (TM) substitution degree with values up to 240 mAh g−1. For specific compositions, a structural O3 to O1 phase transition is observed upon Li removal, which is not reversible upon Li re‐insertion due to kinetic limitations and negatively affects long‐term cycling performance. Density functional theory (DFT) calculations confirm the O3/O1 relative stability along the different series and point subtle electronic differences in the TM‐doping, rationalizing the structural and electrochemical behaviors of these phases upon cycling. These findings provide further insights into the link between structural and electronic stability, which is of key importance for designing chalcogenide‐based anionic redox compounds.

Funder

National Science Foundation

Agence Nationale de la Recherche

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3