Mechanistic Understanding of Additive Reductive Degradation and SEI Formation in High‐Voltage NMC811||SiOx‐Containing Cells via Operando ATR‐FTIR Spectroscopy

Author:

Weiling Matthias1ORCID,Lechtenfeld Christian2ORCID,Pfeiffer Felix1ORCID,Frankenstein Lars2,Diddens Diddo1ORCID,Wang Jian‐Fen1,Nowak Sascha2ORCID,Baghernejad Masoud1ORCID

Affiliation:

1. Helmholtz‐Institute Münster IEK‐12 Forschungszentrum Jülich GmbH Corrensstrasse 46 48149 Münster Germany

2. Meet Battery Research Center Münster University of Münster Corrensstrasse 46 48149 Münster Germany

Abstract

AbstractThe implementation of silicon (Si)‐containing negative electrodes is widely discussed as an approach to increase the specific capacity of lithium‐ion batteries. However, challenges caused by severe volume changes and continuous (re‐)formation of the solid‐electrolyte interphase (SEI) on Si need to be overcome. The volume changes lead to electrolyte consumption and active lithium loss, decaying the cell performance and cycle life. Herein, the additive 2‐sulfobenzoic acid anhydride (2‐SBA) is utilized as an SEI‐forming electrolyte additive for SiOx‐containing anodes. The addition of 2‐SBA to a state‐of‐the‐art carbonate‐based electrolyte in high‐voltage LiNi0.8Mn0.1Co0.1O2, NMC811||artificial graphite +20% SiOx pouch cells leads to improved electrochemical performance, resulting in a doubled cell cycle life. The origin of the enhanced cell performance is mechanistically investigated by developing an advanced experimental technique based on operando attenuated total reflection Fourier‐transform infrared (ATR‐FTIR) spectroscopy. The operando ATR‐FTIR spectroscopy results elucidate the degradation mechanism via anhydride ring‐opening reactions after electrochemical reduction on the anode surface. Additionally, ion chromatography conductivity detection mass spectrometry, scanning electron microscopy, energy dispersive X‐ray analysis, and quantum chemistry calculations are employed to further elucidate the working mechanisms of the additive and its degradation products.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3