Reversible Protonated Electrolyte Additive Enabling Dendrites‐Free Zn Metal Anode with High Depth of Discharge

Author:

Wang Yuao1,Wang Tiantian2,Mao Yiyang1,Li Zhuo1,Yu Huiying1,Su Mingyu1,Ye Ke13,Cao Dianxue1,Zhu Kai1ORCID

Affiliation:

1. Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China

2. School of Materials Science and Engineering Shenyang University of Technology Shenyang Liaoning 110870 China

3. Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 China

Abstract

AbstractAqueous zinc ion batteries (AZIBs) have stimulated extensive attention due to their environmental friendliness and low cost. Unfortunately, the inevitable dendrite growth and corrosion on the zinc (Zn) anode severely hinder the practical application of AZIBs. Herein, an amino acid containing an imidazole group is introduced as an effective additive to address these issues. The dynamic conversion of amino acid and protonated amino acid creates a pH buffer function that regulates solution pH in real time, inhibits hydrogen evolution reaction (HER), and eliminates notorious by‐products. In addition, the protonated amino acid is preferentially adsorbed on the Zn anode, preventing contact of the active water with the Zn surface and promoting homogeneous Zn deposition. Thus, the amino acid‐based electrolyte promotes dendrite free plating/stripping with a Coulombic efficiency up to 99.67% and cycle lifetime of 2600 h. In particular, a depth of discharge of up to 87% can be achieved with an ultra‐high areal capacity of 24 mAh cm−2. The developed Zn||CVO full cell also exhibits better electrochemical performance than that without additives. This work provides an effective and convenient approach for safe and efficient Zn‐ion batteries.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3