Impact of the Solid Electrolyte Particle Size Distribution in Sulfide‐Based Solid‐State Battery Composites

Author:

Schlautmann Eva1,Weiß Alexander23,Maus Oliver1,Ketter Lukas1,Rana Moumita1,Puls Sebastian4,Nickel Vera5,Gabbey Christine5,Hartnig Christoph5,Bielefeld Anja23,Zeier Wolfgang G.14ORCID

Affiliation:

1. Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 28/30 48149 Münster Germany

2. Center for Materials Research Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany

3. Institute of Physical Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany

4. Institut für Energie‐ und Klimaforschung IEK‐12: Helmholtz‐Institut Münster Forschungszentrum Jülich Corrensstrasse 46 48149 Münster Germany

5. AMG Lithium GmbH Industriepark Höchst, Building B852 65926 Frankfurt am Main Germany

Abstract

AbstractAll solid‐state batteries are promising, as they are expected to offer increased energy density over conventional lithium‐ion batteries. Here, the microstructure of solid composite electrodes plays a crucial role in determining the characteristics of ionic and electronic pathways. Microstructural aspects that impede charge carrier transport can, for instance, be voids resulting from a general mismatch of particle sizes. Solid electrolyte materials with smaller particle size distribution represent a promising approach to limit the formation of voids and to match the smaller active materials. Therefore, a systematic investigation on the influence of the solid electrolyte particle size on the microstructural properties, charge carrier transport, and rate performance is essential. This study provides an understanding of the influence of the particle sizes of Li6PS5Cl on the charge carrier transport properties and their effect on the performance of solid‐state batteries. In conclusion, smaller Li6PS5Cl particles optimize the charge transport properties and offer a higher interface area with the active material, resulting in improved solid‐state battery performance.

Funder

Bundesministerium für Bildung und Forschung

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3