Robust Nitrogen/Sulfur Co‐Doped Carbon Frameworks as Multifunctional Coating Layer on Si Anodes Toward Superior Lithium Storage

Author:

Yu Yuanyuan12,Yang Chen1,Jiang Yan1,Shang Zhoutai1,Zhu Jiadeng34,Zhang Junhua2,Jiang Mengjin1ORCID

Affiliation:

1. College of Polymer Science and Engineering Sichuan University Chengdu 610065 China

2. State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

3. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

4. Smart Devices Brewer Science Inc Springfield MO 65806 USA

Abstract

AbstractSilicon (Si)‐based anodes hold great potential for next‐generation lithium‐ion batteries (LIBs) due to their exceptional theoretical capacity. However, their practical application is hindered by the notably substantial volume expansion and unstable electrode/electrolyte interfaces during cycling, leading to rapid capacity degradation. To address these challenges, we have engineered a porous nitrogen/sulfur co‐doped carbon layer (CBPOD) to uniformly encapsulate Si, providing a multifunctional protective coating. This innovative design effectively passivates the electrode/electrolyte interface and mitigates the volumetric expansion of Si. The N/S co‐doping framework significantly enhances electronic and ionic conductivity. Furthermore, the carbonization process augments the elastic modulus of CBPOD and reconstructs the Si‐CBPOD interface, facilitating the formation of robust chemical bonds. These features collectively contribute to the high performance of the Si‐CBPOD anodes, which demonstrate a high reversible capacity of 1110.8 mAh g−1 after 1000 cycles at 4 A g−1 and an energy density of 574 Wh kg−1 with a capacity retention of over 75.6% after 300 cycles at 0.2 C. This study underscores the substantial potential of the CBPOD protective layer in enhancing the performance of Si anodes, providing a pathway for the development of composite materials with superior volumetric energy density and prolonged cyclic stability, thereby advancing high‐performance LIBs.

Funder

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3