Effect of Hole Transport Materials and Their Dopants on the Stability and Recoverability of Perovskite Solar Cells on Very Thin Substrates after 7 MeV Proton Irradiation

Author:

Tang Shi123,Peracchi Stefania4,Pastuovic Zeljko4,Liao Chwenhaw12,Xu Alan56,Bing Jueming12,Zheng Jianghui127,Mahmud Md Arafat12,Wang Guoliang12,Townsend‐Medlock Edward Dominic12,Wilson Gregory J.3,Lakhwani Girish28,Brenner Ceri4,McKenzie David R.12,Ho‐Baillie Anita W. Y.127ORCID

Affiliation:

1. School of Physics The University of Sydney Sydney 2006 Australia

2. The University of Sydney Nano Institute (Sydney Nano) The University of Sydney Sydney 2006 Australia

3. CSIRO Energy Newcastle Energy Centre 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia

4. Centre for Accelerator Science Australia's Nuclear Science and Technology Organisation Lucas Heights 2234 Australia

5. Nuclear Fuel Cycle Australian Nuclear Science and Technology Organisation Lucas Heights 2234 Australia

6. School of Materials Science and Engineering University of New South Wales Sydney NSW 2052 Australia

7. Australian Centre for Advanced Photovoltaics (ACAP) School of Photovoltaic and Renewable Energy Engineering University of New South Wales Sydney 2052 Australia

8. ARC Centre of Excellence in Exciton Science School of Chemistry University of Sydney Sydney NSW 2006 Australia

Abstract

AbstractThe drastic reduction in launch and manufacturing costs of space hardware has facilitated the emergence of "commercial" space. Radiation‐hard organometal halide perovskite solar cells (PSCs) with low‐cost and high‐efficiency potentials are promising for space applications.High‐efficiency PSCs are tested with different hole transport materials (HTMs) and dopants on 175µm sapphire substrates under 7MeV‐proton‐irradiation‐tests at accumulated fluences of 1011, 1012, and 1013 protons cm−2. While all cells retain >90% of their initial power conversion efficiencies (PCEs) after 1011 protons cm−2 irradiation, PSCs that have tris(pentafluorophenyl)borane (TPFB) as the HTM dopant and poly[bis(4‐phenyl)(2,5,6‐trimethylphenyl) amine (PTAA) or PTAA:C8BTBT (C8BTBT = 2,7‐Dioctyl[1]benzothieno[3,2‐b][1]benzothiophene) as the HTM are more tolerant to higher‐fluence radiation than their counterparts with the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant and the 2,2′,7,7′‐Tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (Spiro‐OMeTAD) HTM. Radiation induces fluorine diffusion from the LiTFSI dopant toward the perovskite absorber (confirmed by depth‐resolved X‐ray photoelectron spectroscopy) introducing defects. Radiation‐induced defects in cells with the TPFB dopant instead are different and can be “annealed out” by thermal vacuum resulting in PCE recovery. This is the first report using thermal admittance spectroscopy and deep‐level transient spectroscopy for defect analyses on proton‐irradiated and thermal‐vacuum‐recovered PSCs. The insights generated are expected to contribute to efforts in developing low‐cost light‐weight solar cells for space applications.

Funder

Australian Government

Australian Renewable Energy Agency

Australian Research Council

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Reference60 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3