Converting Undesirable Defects into Activity Sites Enhances the Photoelectrochemical Performance of The ZnIn2S4 Photoanode

Author:

Huang Yulong1,He Jinlu2,Xu Weiwei3,Liu Tianyun1,Chen Runyu1,Meng Linxing14,Li Liang1ORCID

Affiliation:

1. School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China

2. College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China

3. School of Electronic and Information Engineering Changshu Institute of Technology Changshu 215500 P. R. China

4. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou 215006 P. R. China

Abstract

AbstractHeteroatom doping can tune the band structure of semiconductors and enhance their carrier transfer capacity for improving the performance of photoelectrochemical water oxidation. Nevertheless, the introduction of dopants is not always beneficial. In this study, magnesium (Mg) is adopted to dope ZnIn2S4 nanosheet array photoanodes to form a type‐II band structure and reduce bulk recombination, but concurrently introduced deleterious oxygen (O) defects slow down the surface catalytic reaction kinetics. Furthermore, a facile heat treatment strategy is proposed to transform these O defects into Mg─O bonds. First‐principles calculations and electrochemical characterization indicate that the presence of Mg─O bonds provides abundant active sites and efficiently accelerates the surface oxygen evolution reaction by precisely realigning the rate‐determining step from OH* to O* (step 2) to OOH* to O2 (step 4), thereby retarding charge trapping and recombination. As a result, such a photoanode achieves a remarkable performance with a photocurrent as high as 4.91 mA cm−2 at 1.23 V versus reversible hydrogen electrode, and the onset potential shifts negatively about 340 mV. This work provides a new defect modulation idea for converting detrimental defects to favorable ones, and it can be expected to have wide applications in the fields of energy, catalysis, and optoelectronics, etc.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3