Versatile Self‐Assembled Molecule Enables High‐Efficiency Wide‐Bandgap Perovskite Solar Cells and Organic Solar Cells

Author:

Wang Wanhai12,Liu Xin3,Wang Juncheng4,Chen Cong4,Yu Jiangsheng3,Zhao Dewei4,Tang Weihua12ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China

2. Institute of Flexible Electronics (IFE, Future Technologies) Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) College of Materials Xiamen University Xiamen 361005 P. R. China

3. School of Electronic and Optical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China

4. College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 P. R. China

Abstract

AbstractPerovskite solar cells (PSCs) and organic solar cells (OSCs) face device efficiency losses and instability challenges with existing hole transport materials (HTMs). The development of new universal HTMs is in great demand to promote their practical applications. Herein, a versatile self‐assembled molecule (SAM) based HTM is designed for record‐high efficiency wide‐bandgap (WBG, Eg >1.75 eV) PSCs, all‐perovskite tandem solar cells (TSCs) and OSCs. The SAM exhibits high transmission and a lower‐lying energy level, enabling enhanced interfacial charge transfer and suppressed non‐radiative recombination losses. SAM based WBG PSCs deliver a maximum power conversion efficiency (PCE) of 18.63% with over 90% efficiency retention after 250 h continuous work. By stacking the optimal WBG PSC and a narrow‐bandgap PSC bottom cell, the 4‐terminal all‐perovskite TSC achieves a remarkable 26.24% PCE. More importantly, this SAM based HTM exhibits impressive generality in bulk heterojunction OSCs rivalling PEDOT:PSS, with an impressive PCE of 18.84% obtained for PM6:BTP‐eC9 based devices. When scaling up the PM6:BTP‐eC9 device to 0.5 cm2 in area (0.71 cm × 0.71 cm), the SAM based OSCs afford a highest PCE of 16.33%. This work provides a perspective for the design of universal SAM based charge transport materials targeting PSCs and OSCs for facile large‐area fabrication.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Guangxi University

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3