Unveiling the Selenization Reaction Mechanisms in Ambient Air‐Processed Highly Efficient Kesterite Solar Cells

Author:

Yu Zixuan1,Li Chuanhao1,Chen Shuo1,Zheng Zhuanghao1,Fan Ping1,Li Yingfen2,Tan Manlin3,Yan Chang4,Zhang Xianghua5,Su Zhenghua1ORCID,Liang Guangxing1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Advanced Thin Films and Applications Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

2. College of Materials and Energy Engineering Guizhou Institute of Technology Guiyang 550003 China

3. Research Institute of Tsinghua University in Shenzhen Shenzhen 518055 China

4. Sustainable Energy and Environment Thrust, Jiangmen Laboratory of Carbon Science and Technology The Hong Kong University of Science and Technology (Guangzhou) Guangzhou 510000 China

5. CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 Université de Rennes Rennes F‐35000 France

Abstract

AbstractThe selenization annealing process is vital for highly efficient kesterite solar cells. Generally, SnS is added during the selenization process, but excessive S and related defects are introduced. Meanwhile, the path of supplementing Sn has never been elucidated. Herein, in order to solve the above problems, a combination of strategies involving SnS and Sn or SnSe or SnSe2 is put forward. And the composition of the vapor inhibiting Sn loss (gaseous SnSe3) and the pathway through which SnSe3 facilitates the formation of Cu2ZnSn(SxSe1‐x)4 (CZTSSe) are clarified. When SnSe2 is added to SnS in the selenization process, grain fusion is effectively promoted. The high crystalline quality kesterite absorber makes the band bending at the GBs optimal and the interface recombination be effectively suppressed. Moreover, cation disorder is remarkably reduced. Therefore, the open‐circuit voltage (Voc) is significantly elevated from 508 to 546 mV with increased fill factor (FF) and short‐circuit current density (Jsc). A state‐of‐the‐art ambient air‐processed kesterite device with 12.89% efficiency is achieved, and the unveiled reaction mechanisms have guiding significance for further optimizing selenization atmosphere and elevating the efficiency of CZTSSe solar cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3