Highly Asymmetric CuSA‐Ov‐Ti3c Atomic Sites Catalyst for Unprecedented Solar Hydrogen Generation

Author:

Kumar Dileep1,Mishra Ankit2,Shubham 1,Hemant 1,Bhattacharjee Sudip3,Urkude Rajashri R.4,Ghosh Biplab4,Bhaumik Asim3,Sinha Anil Kumar2,Sinha A. S. K.5,Amoli Vipin1ORCID

Affiliation:

1. Photochemical Engineering Laboratory, Department of Sciences and Humanities Rajiv Gandhi Institute of Petroleum Technology Amethi Uttar Pradesh 229304 India

2. Biofuels Divison CSIR Indian Institute of Petroleum Dehradun Uttarakhand 248005 India

3. School of Materials Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India

4. Beamline Development and Application Section Bhabha Atomic Research Centre Mumbai 400085 India

5. Department of Chemical and Biochemical Engineering Rajiv Gandhi Institute of Petroleum Technology Amethi Uttar Pradesh 229304 India

Abstract

AbstractAtomic‐level tailoring of active sites is an efficient strategy for designing high‐performance photocatalysts for clean energy. Asymmetric atomic sites (AAS) like MSA‐Ov‐M2 created through hetero‐metal single atoms (MSA) doping on defect‐rich metal oxides (M2‐Ov‐M2) are favored for better activation of targeted molecules. However, creating AAS typically demands high energy input, hindering their widespread use in photocatalytic H2 production. Furthermore, precise control over surface defects to create AAS remains challenging. Here, CuSA‐Ov‐Ti3c highly asymmetric atomic sites catalyst (HAASC) is constructed by strategically trapping Cu single atoms on high‐index (111) faceted TiO2. This material combines single‐atom catalysis and facet engineering, achieving unprecedented H2 production rates (8.3 mmol h−1 g−1 in pure water and 784.5 mmol h−1 g−1 in water/methanol mixture). Experimental and theoretical analyses reveal CuSA substituting five‐coordinated Ti atoms (Ti5c) next to three‐coordinated (Ti3c) ones, forming CuSA‐Ov‐Ti3c HAAS. HAAS plays multiple roles in i) improving light harvesting, charge‐transfer dynamics, and redox capability of photoexcited electrons; ii) enhanced adsorption and polarization of H2O molecules; iii) facilitating electron transfer from CuSA‐Ov‐Ti3c to H2O molecules, and iv) raising d‐band center toward Fermi level resulting in ≈250‐fold enhanced H2 production than Ti5c‐O‐Ti3c AASC. This work opens new avenues for future structural designs in heterogeneous catalysis for energy‐related applications.

Funder

Rajiv Gandhi Institute of Petroleum Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3