Fast Charge‐Transfer Rates in Li‐CO2 Batteries with a Coupled Cation‐Electron Transfer Process

Author:

Jaradat Ahmad1,Ncube Musawenkosi K.2,Papailias Ilias1ORCID,Rai Nikhil1,Kumar Khagesh3,Koverga Volodymyr24,Nemade Roshan Y.2,Zhang Chengji14,Shan Nannan24,Shahbazi Hessam1ORCID,Namaeighasemi Arash1,Seraji Pardis1ORCID,Namvar Shahriar1,Berry Vikas2,Cabana Jordi3,Subramanian Arunkumar1,Ngo Anh T.24,Curtiss Larry A.4,Salehi‐Khojin Amin1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering University of Illinois at Chicago Chicago IL 60607 United States

2. Department of Chemical Engineering University of Illinois at Chicago Chicago IL 60608 United States

3. Department of Chemistry University of Illinois at Chicago Chicago IL 60607 United States

4. Materials Science Division Argonne National Laboratory Lemont IL 60439 United States

Abstract

AbstractLi‐CO2 batteries with a high theoretical energy density (1876 Wh kg−1) have unique benefits for reversible carbon fixation for energy storage systems. However, due to lack of stable and highly active catalysts, the long‐term operation of Li‐CO2 batteries is limited to low current densities (mainly <0.2 mA cm−2) that are far from practical conditions. In this work, it is discovered that, with an ionic liquid‐based electrolyte, highly active and stable transition metal trichalcogenide alloy catalysts of Sb0.67Bi1.33X3 (X = S, Te) enable operation of the Li‐CO2 battery at a very high current rate of 1 mA cm−2 for up to 220 cycles. It is revealed that: i) the type of chalcogenide (Te vs S) significantly affects the electronic and catalytic properties of the catalysts, ii) a coupled cation‐electron charge transfer process facilitates the carbon dioxide reduction reaction (CO2RR) occurring during discharge, and iii) the concentration of ionic liquid in the electrolyte controls the number of participating CO2 molecules in reactions. A combination of these key factors is found to be crucial for a successful operation of the Li‐CO2 chemistry at high current rates. This work introduces a new class of catalysts with potential to fundamentally solve challenges of this type of batteries.

Funder

U.S. Department of Energy

Office of Energy Efficiency and Renewable Energy

Vehicle Technologies Office

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3