Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole‐Based High‐Temperature Proton Exchange Membranes

Author:

Bai Yu1,Xiao Min1,Wang Chengxin1,Wang Shuanjin1,Meng Yuezhong1234ORCID,Miyatake Kenji56

Affiliation:

1. The Key Laboratory of Low‐carbon Chemistry & Energy Conservation of Guangdong Province / State Key Laboratory of Optoelectronic Materials and Technologies Sun Yat‐sen University Guangzhou 510275 China

2. Institute of Chemistry Henan Provincial Academy of Sciences Zhengzhou 450000 China

3. College of Chemistry Zhengzhou University Zhengzhou 450001 China

4. School of Chemical Engineering and Technology Sun Yat‐sen University Zhuhai 519000 China

5. Clean Energy Research Center and Fuel Cell Nanomaterials Center University of Yamanashi Kofu Yamanashi 400–8510 Japan

6. Department of Applied Chemistry, and Research Institute for Science and Engineering Waseda University Tokyo 169–8555 Japan

Abstract

AbstractAcid‐functionalized polymers enhance the performance of phosphoric‐acid‐doped polybenzimidazoles (PA/PBIs); however, studies on examining the mechanisms driving these enhancements are scarce. Furthermore, the nanophase morphology of PA‐dependent proton‐exchange membranes has been rarely explored, despite its direct role in the distribution of PA and protonic conduction. In this study, theoretical and experimental analyses to evaluate the microphase separation, particularly the formation and in situ transformation of a two‐phase interface, in a defect‐free polyphenylene ionomer (SPP‐QP) with excellent integrity are performed. SPP‐QP serves as a fortifying agent with an enhanced microphase‐separation ability within PA/PBI‐based membranes. Specifically, the distinct swelling behavior of PA results in the formation of PA‐rich and PA‐poor regions. Thus, the formation of a durable interface that is impervious to PA degradation between SPP‐QP and PBI is critical for facilitating microphase separation. A single cell composed of the composite membrane offers a peak power density of 719 mW cm−2 at 160 °C. Moreover, the durability of a single cell is much longer than 150 h. The results obtained in this study provide insights into the micromorphology and membrane properties observed in the presence of PA.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3