Functional Tactile Sensor Based on Arrayed Triboelectric Nanogenerators

Author:

Peng Wang12,Zhu Rongrong1,Ni Qianqiu1,Zhao Junqing3,Zhu Xuanchen1,Mei Qingsong4,Zhang Chi3,Liao Lingyi4ORCID

Affiliation:

1. College of Engineering Huazhong Agricultural University Wuhan 430070 China

2. Key Laboratory of Agricultural Equipment in Mid‐Lower Yangtze River Ministry of Agriculture and Rural Affairs Wuhan 430070 China

3. Beijing Key Laboratory of Micro‐nano Energy and Sensor Center for High‐Entropy Energy and Systems Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China

4. School of Power and Mechanical Engineering Wuhan University Wuhan 430070 China

Abstract

AbstractIn the era of Internet of Things (IoT) and Artificial Intelligence (AI), sensors have become an integral part of intelligent systems. Although the traditional sensing technology is very mature in long‐term development, there are remaining defects and limitations that make it difficult to meet the growing demands of current applications, such as high‐sensitivity detection and self‐supplied sensing. As a new type of sensor, array triboelectric nanogenerators (TENG)‐based tactile sensors can respond to wide dynamic range of mechanical stimuli in the surrounding environment and converting them into quantifiable electrical signals, thus realizing real‐time self‐supplied tactile sensing. The array structure allows for fine delineation of the sensing area and improved spatial resolution, resulting in accurate localization and quantification of the detected tactile signals, and have been widely used in wearable devices, smart interaction, medical and health detection, and other fields. In this paper, the latest research progress of functional tactile sensors based on arrayed triboelectric nanogenerators is systematically reviewed from the aspects of working mechanism, material selection, material processing, structural design, functional integration, and application. Finally, the challenges faced by arrayed triboelectric tactile sensors are summarized with a view to providing inspiration and guidance for the future development of tactile sensors.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3