Affiliation:
1. Frontiers Science Center for New Organic Matter State Key Laboratory of Advanced Chemical Power Sources Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) College of Chemistry Nankai University Tianjin 300071 P. R. China
2. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China
Abstract
AbstractLithium metal batteries (LMBs), based on high‐voltage (HV) LiNixCoyMnzO2 (NCM, x+y+z = 1) materials, exhibit great potential for next‐generation electric vehicle (EV) cells. Nevertheless, the inevitable dissolution and shuttle of transition metal (TM) ions from NCM cathodes poses a threat to the electrochemical sustainability of LMBs, especially at high voltage and high temperatures. Herein, ethylene diamine tetraacetic acid (EDTA)‐grafted MOF‐808 is proposed to serve as a multifunctional ion‐selective separator coating, in which EDTA molecules play a targeted ion sifter role in restricting active‐ion crosstalk. Judicious characterizations and theoretical calculations reveal that the separator coating effectively captures the TM‐ions in the electrolyte and thus ensures stable Li deposition without dendrites. As a result, the 4.5 V NCM622//Li cell with the ion‐selective separator achieves a high‐capacity retention over 1000 cycles with a high Coulombic efficiency of 99.68%, and its cycling stability at 55 °C is also upgraded. This crosstalk‐taming strategy offers fresh insight into constructing long‐life HV‐LMBs.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Innovative Research Group Project of the National Natural Science Foundation of China
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献