Factors Influencing Gas Evolution from High‐Nickel Layered Oxide Cathodes in Lithium‐Based Batteries

Author:

Sim Richard1,Manthiram Arumugam1ORCID

Affiliation:

1. Texas Materials Institute The University of Texas at Austin 204 E Dean Keaton Street Austin TX 78712 USA

Abstract

AbstractGas evolution from high‐nickel layered oxide cathodes (>90% Ni) remains a major issue for their practical application. Gaseous species, such as CO2, O2, and CO, that are evolved at high states of charge (SOC) worsen the overall safety of batteries, as pressure build‐up within the cell may lead to cell rupture. Since these gasses are produced during cathode degradation, tracking the formation of gasses is also important in diagnosing cathode failure. Online electrochemical mass spectrometry (OEMS) is a powerful in situ technique to study gas evolution from the cathode during high‐voltage charge. However, the differences in the OEMS experimental setups between different groups make it challenging to compare results between groups. In this perspective, the various factors that influence gas evolution based on the OEMS results collected in this group are presented. The focus is on the conditions that lead to gas release, with a particular emphasis on reactive oxygen formation and subsequent chemical reactions with the electrolyte. Promising strategies, such as electrolytes, compositional tuning, and surface coatings that are effective at suppressing gas evolution from the cathode are highlighted. Critical insights into mitigating cathode degradation and gas evolution are provided to guide the development of safer, high‐energy batteries.

Funder

Vehicle Technologies Office

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3