Amorphous/Crystalline Rh(OH)3/CoP Heterostructure with Hydrophilicity/ Aerophobicity Feature for All‐pH Hydrogen Evolution Reactions

Author:

Xing Minghui1,Zhu Shaoke1,Zeng Xiaofei1,Wang Shitao1,Liu Zhiping1,Cao Dapeng1ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China

Abstract

AbstractInterface engineering shows distinct advantages in the electrocatalytic hydrogen evolution reaction (HER) due to the unique structures that can be realized. The interfaces formed by amorphous materials often exhibit special properties that are beneficial for the HER. Herein, an amorphous/crystalline Rh(OH)3/CoP heterostructure is constructed, which exhibits outstanding HER performance in the all‐pH range. It only needs the overpotentials of 13, 12, and 25 mV to drive a current density of 10 mA cm−2 in alkaline, acidic, and neutral media, respectively, which ranks as one of the best HER electrocatalysts reported recently. The outstanding HER activities in the all‐pH range are attributed to the unique amorphous/crystalline heterostructure of Rh(OH)3/CoP, which possesses special hydrophilic/aerophobic features thataccelerate mass transfer, and provide abundant exposed active sites and appropriate defects. Importantly, the performance attenuation mechanism of the catalyst is also revealed, i.e., the formation of Rh aggregations leads to poor contact and efficacy loss of the amorphous/crystalline interface for HER. In short, this work provides a new idea for using amorphous/crystalline heterostructure to design electrocatalysts, not only for the HER, but also for the oxygen reduction and oxygen evolution reactions.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3