A Colored Temperature‐Adaptive Cloak for Year‐Round Building Energy Saving

Author:

Yin Yingying1,Sun Pengcheng12,Zeng Yijun12,Yang Meng1,Gao Shouwei2,Wang Steven1,Huang Zhengyong3,Zhang Yingfan3,Wang Yang14,Wang Zuankai25ORCID

Affiliation:

1. Department of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China

2. Department of Mechanical Engineering Hong Kong Polytechnic University Hong Kong 999077 China

3. State Key Laboratory of Power Transmission Equipment Technology School of Electrical Engineering Chongqing University Chongqing 400000 China

4. College of Chemical Engineering Jilin University Jilin 132000 China

5. Shenzhen Research Institute of The Hong Kong Polytechnic University Shenzhen 518057 China

Abstract

AbstractAchieving year‐round energy savings in buildings holds great significance toward reaching carbon neutrality and sustainability. Switchable thermal‐management materials offer an energy‐free solution to dynamically regulating internal building temperatures, by passively emitting heat into cold outer space in summer, and absorbing heat from hot sunlight in winter. In addition to dynamic thermal regulation, color display is another pursuit for addressing aesthetic considerations; however, most current dynamically switchable materials lack color options, due to an optical conflict between adaptive solar reflection and selective visible absorption, limiting their wide adoption in aesthetic scenarios such as commercial exterior walls. Herein, a colored temperature‐adaptive cloak (CTAC) that achieves dynamically switchable thermal management in an energy‐neutral way without sacrificing year‐round vibrant color display is reported. This is realized by decoupling solar reflectivity modulation and color display through the choice of two individual constituent components, including thermochromic microcapsules, and fluorescent dyes. Moreover, compared to single‐mode samples with similar colors, the CTAC with dual modes stays 5.6–3.4 °C warmer during cold winter and 14.9–7.9 °C cooler during hot summer (peak solar irradiance: ≈735 and 1030 W m−2, respectively), exhibiting a remarkable potential to achieve year‐round building energy savings.

Funder

National Natural Science Foundation of China

Shenzhen Municipal Science and Technology Innovation Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3