High‐Entropy Phase Stabilization Engineering Enables High‐Performance Layered Cathode for Sodium‐Ion Batteries

Author:

Wang Bing123ORCID,Ma Jun123ORCID,Wang Kejian123,Wang Dekai123,Xu Gaojie123,Wang Xiaogang123,Hu Zhiwei4ORCID,Pao Chih‐Wen5,Chen Jeng‐Lung5,Du Li123,Du Xiaofan123,Cui Guanglei123ORCID

Affiliation:

1. Qingdao Industrial Energy Storage Research Institute Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China

2. Shandong Energy Institute Qingdao 266101 P. R. China

3. Qingdao New Energy Shandong Laboratory Qingdao 266101 P. R. China

4. Max Planck Institute for Chemical Physics of Solids 01187 Dresden Germany

5. National Synchrotron Radiation Research Center Hsinchu Taiwan 30076 P. R. China

Abstract

AbstractO3‐type layered oxides are considered as one of the most promising cathode materials for rechargeable sodium‐ion batteries (SIBs) due to their appealing energy density and feasible synthesis. Nevertheless, it undergoes complicated phase transitions and pronounced structural degradation during the cycling of charge/discharge process, rendering severe volumetric strain and poor cycling performance. Herein, a zero‐strain high‐entropy NaNi0.2Fe0.2Mn0.35Cu0.05Zn0.1Sn0.1O2 cathode for SIBs is presented by high‐entropy phase stabilization engineering. It is verified that this low‐nickel cobalt‐free high‐entropy cathode can deliver a highly reversible phase evolution, zero volumetric strain, and a significantly improved cycling performance in full cells (87% capacity retention after 500 cycles at 3.0  C). Combining X‐ray absorption spectra and first‐principles calculations, the varied elemental functions in the high‐entropy framework are clearly elucidated, namely, Ni/Fe/Cu acts as charge compensators, while Mn/Zn/Sn serve as interlayer slipping inhibitors through enhanced charge localization besides their stable valence states. By addressing the volumetric strain and cycling instability concerns for O3‐type cathode materials, this work presents a promising strategy for inhibiting irreversible phase transitions and structural degradation in intercalation electrodes, which significantly boosts the development of commercially feasible cathodes for high‐performance SIBs.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Applied Basic Research Fund of Qingdao

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3