Unraveling the Role of Surficial Oxygen Vacancies in Stabilizing Li‐Rich Layered Oxides

Author:

Wang Kai1,Qiu Jimin1,Hou Fuchen2,Yang Ming3,Nie Kaiqi4,Wang Jiaou4,Hou Yichao5,Huang Weiyuan1,Zhao Wenguang1,Zhang Peixin3,Lin Junhao2,Hu Jiangtao3,Pan Feng1,Zhang Mingjian6ORCID

Affiliation:

1. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China

2. Department of Physics Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China

3. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518060 P. R. China

4. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

5. State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Frontiers, Science Center for Rare Isotopes College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China

6. School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China

Abstract

AbstractLi‐rich layered oxides based on the anionic redox chemistry provide the highest practical capacity among all transition metal (TM) oxide cathodes but still struggle with poor cycling stability. Here, a certain amount of oxygen vacancies (OVs) are introduced into the ≈10 nm‐thick surface region of Li1.2Ni0.13Co0.13Mn0.54O2 through a long‐time medium‐temperature post‐annealing. These surficial enriched OVs significantly suppress the generation of O‐O dimers (O2n−, 0 < n < 4) and the associated side reactions, thus facilitating the construction of a uniform and compact cathode/electrolyte interphase (CEI) layer on the surface. The CEI layer then decreases the further side reactions and TM dissolution and protects the bulk structure upon cycling, eventually leading to enhanced cycling stability, demonstrated in both half cells and full cells. An in‐depth understanding of OVs is expected to benefit the design of stable cathode materials based on anionic redox chemistry.

Funder

National Natural Science Foundation of China

Soft Science Research Project of Guangdong Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3