Affiliation:
1. Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Advanced Technology Research Institute (Jinan) Beijing Institute of Technology Beijing 100081 P. R. China
Abstract
AbstractPrecisely designing asymmetric diatomic configurations and studying their electronic regulation effect for improving the oxygen reduction reaction (ORR) performance are important for anion exchange membrane fuel cells (AEMFCs). Here, a Fe, Cu co‐doped 2D crystalline IISERP‐MOF27 nanosheet derived FeN3O‐CuN4 diatomic site nanocatalyst (named as FeCu‐NC) is synthesized for the cathodes of AEMFCs. Thanks to the optimal electronic structure of FeN3O‐CuN4 in the FeCu‐NC catalyst, it shows enhanced half‐wave potential (0.910 V), turnover frequency (0.165e s−1 site−1), and decreased activation energy (19.96 kJ mol−1) in KOH. The FeCu‐NC‐based AEMFC achieves extremely high kinetic current (0.138 A cm−2 at 0.9 V) and rated power density (1.09 W cm−2), surpassing the best‐reported transition metal‐based cathodes. Density functional theory calculations further demonstrate that the Cu‐N4 can break the localization of Fe‐3d orbitals, accelerate the electron transport, and optimize the OH adsorption, thus facilitating the ORR process.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献