Monolithically Integrated BiVO4/Si Tandem Devices Enabling Unbiased Photoelectrochemical Water Splitting

Author:

Jung Gihun1,Moon Choongman1,Martinho Filipe2,Jung Yonghoon3,Chu Jinwoo1,Park Hyewon4,Hajijafarassar Alireza5,Nielsen Rasmus6,Schou Jørgen2,Park Jeongyoung4,Vesborg Peter Christian Kjærgaard6,Hansen Ole5,Lee Yun Seog3,Canulescu Stela2,Shin Byungha1ORCID

Affiliation:

1. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea

2. Department of Electrical and Photonics Engineering Technical University of Denmark Roskilde DK‐4000 Denmark

3. Department of Mechanical Engineering Seoul National University Seoul 08826 Republic of Korea

4. Department of Chemistry Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea

5. DTU Nanolab Technical University of Denmark Kgs. Lyngby DK‐2800 Denmark

6. Department of Physics Technical University of Denmark Kgs. Lyngby DK‐2800 Denmark

Abstract

AbstractA photoelectrochemical (PEC) water splitting device based on a dual‐junction monolithic tandem cell that utilizes NiOOH/FeOOH/BiVO4/SnO2/Ta:SnO2 (TTO)/tunnel oxide passivated contact (TOPCon) Si is reported. The PEC device achieves a maximum photocurrent density of 1.4 mA cm−2 (equal to a solar‐to‐hydrogen conversion efficiency of 1.72%) in 1.0 m potassium borate solution (pH 9) when illuminated with air mass 1.5 G simulated solar irradiation, which is the highest value among dual‐junction monolithic photoelectrochemical cells except for III–V materials. The TOPCon Si not only works as an appropriate bottom photoelectrode for subsequent high‐temperature BiVO4 processing but also offers a high photovoltage of 590 mV. Transparent and conductive TTO grown by pulsed laser deposition serves as a recombination layer to achieve effective integration. In addition, the TTO provides chemical and physical protection, allowing the surface of the TOPCon Si to exhibit 24 h of tandem cell stability under weak base electrolyte conditions. The SnO2 hole‐blocking layer inserted between TTO and BiVO4 enhances the charge separation of BiVO4, allowing the device to achieve high efficiency. Artificial leaf‐type monolithic tandem cells consisting of NiFe/BiVO4/SnO2/TTO/TOPCon Si/Ag/Ti/Pt with a solar‐to‐hydrogen efficiency of 0.44% are also demonstrated.

Funder

Ministry of Strategy and Finance

Ministry of Science, ICT and Future Planning

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3