Unveiling the Growth Mechanism of the Interphase between Lithium Metal and Li2S‐P2S5‐B2S3 Solid‐State Electrolytes

Author:

Gao Chengwei123ORCID,Zhang Jiahui123,He Chengmiao123,Fu Yanqing123ORCID,Zhou Tianyue123,Li Xu123,Kang Shiliang123,Tan Linling123,Jiao Qing123,Dai Shixun123,Yue Yuanzheng4ORCID,Lin Changgui123ORCID

Affiliation:

1. Laboratory of Infrared Materials and Devices Research Institute of Advanced Technologies Ningbo University Ningbo 315211 China

2. Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province Ningbo 315211 China

3. Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province Ningbo 315211 China

4. Department of Chemistry and Bioscience Aalborg University Aalborg DK‐9220 Denmark

Abstract

AbstractChalcogenides with high ionic conductivity and appropriate mechanical properties are promising solid‐state electrolytes (SSEs) to substitute current liquid electrolytes in lithium‐ion batteries. Yet, their practical applications in all‐solid‐state batteries are still retarded by both the low critical current density and the inferior interfacial stability toward electrodes. In this work, a series of superior SSEs, that is, Li2S‐P2S5‐B2S3 electrolytes, are developed via a ball‐milling and then melt‐quenching strategy. These SSEs exhibit a high critical current density of 1.65 mA cm−2 and a long cycling life of over 300 h. In addition, the evolution mechanism of the interphase between SSEs and metallic lithium is revealed via operando electrochemical impedance spectroscopy, depth‐profiling XPS, and in situ Raman spectroscopy. The structural and chemical heterogeneities are found to be the main origins of the continual interphase evolution. The resulting “multi‐layer mosaic like” interphase facilitates the suppression of Li dendrite growth, and hence, prolongs the lifetime of lithium‐ion all‐solid‐state batteries. In addition, the preparation technique of SSEs developed in the present work is feasible for scale‐up production.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Ningbo University

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3