Examining the Electrochemical Properties of Hybrid Aqueous/Ionic Liquid Solid Polymer Electrolytes through the Lens of Composition‐Function Relationships

Author:

Ludwig Kyle B.1ORCID,Correll‐Brown Riordan1,Freidlin Max1,Garaga Mounesha N.2ORCID,Bhattacharyya Sahana1ORCID,Gonzales Patricia M.3,Cresce Arthur V.4ORCID,Greenbaum Steven2ORCID,Wang Chunsheng1,Kofinas Peter1ORCID

Affiliation:

1. Department of Chemical & Biomolecular Engineering University of Maryland 4418 Stadium Dr College Park MD 20740 USA

2. Department of Physics & Astronomy Hunter College of the City University of New York 695 Park Ave New York NY 10065 USA

3. Department of Materials Science & Engineering University of Maryland 4418 Stadium Dr College Park MD 20740 USA

4. Battery Science Branch, Energy Science Division, Sensors and Electron Devices Directorate DEVCOM US Army Research Laboratory 2800 Powder Mill Rd Adelphi MD 20783 USA

Abstract

AbstractSolid polymer electrolytes (SPEs) have the potential to meet evolving Li‐ion battery demands, but for these electrolytes to satisfy growing power and energy density requirements, both transport properties and electrochemical stability must be improved. Unfortunately, improvement in one of these properties often comes at the expense of the other. To this end, a “hybrid aqueous/ionic liquid” SPE (HAILSPE) which incorporates triethylsulfonium‐TFSI (S2,2,2) or N‐methyl‐N‐propylpyrrolidinium‐TFSI (Pyr1,3) ionic liquid (IL) alongside H2O and LiTFSI salt to simultaneously improve transport and electrochemical stability is studied. This work focuses on the impact of HAILSPE composition on electrochemical performance. Analysis shows that an increase in LiTFSI content results in decreased ionic mobility, while increasing IL and water content can offset its impact. pfg‐NMR results reveal that preferential lithium‐ion transport is present in HAILSPE systems. Higher IL concentrations are correlated with an increased degree of passivation against H2O reduction. Compared to the Pyr1,3 systems, the S2,2,2 systems exhibit a stronger degree of passivation due to the formation of a multicomponent interphase layer, including LiF, Li2CO3, Li2S, and Li3N. The results herein demonstrate the superior electrochemical stability of the S2,2,2 systems compared to Pyr1,3 and provide a path toward further enhancement of HAILSPE performance via composition optimization.

Funder

National Science Foundation

Army Research Laboratory

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3