In Situ Self‐Polymerization of Thioctic Acid Enabled Interphase Engineering Towards High‐Performance Lithium–Sulfur Battery

Author:

Wang Liujian1,Yue Ke2,Qiao Qiangqiang2ORCID,Zhao Zihao1,Xu Yanyan1,Pan Leyi1,Liu Yujing2ORCID,Li Hanying1,Zhu Baoku1

Affiliation:

1. Department of Polymer Science and Engineering Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education) International Research Center for X Polymers Zhejiang University Hangzhou 310027 China

2. Department of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China

Abstract

AbstractLithium–sulfur (Li–S) batteries possess high theoretical energy density, whereas the shuttle effect of polysulfides and the uncontrollable lithium (Li) dendrites seriously reduce the reversible capacity and cycling lifespan. Constructing an interphase to address the issues in both the cathode and anode simultaneously is significant but still challenging. In this study, a strategy of functionalizing commercial polypropylene (PP) separators is proposed by in situ poly(thioctic acid) (PTA) polymerization. Compared with the conventional separator modifications, the ring‐opening polymerization methodology initiated by heat is more facile and environment‐friendly without changing the nanostructures among the porous separators. On the cathode side, the PTA‐coated separator (PTA‐PP) blocks the shuttle of polysulfides through the electrostatic interaction. On the anode side, the PTA‐coated generates a lithium fluoride (LiF)‐rich solid electrolyte interface (SEI), identified by cryo‐transmission electron microscopy (cryo‐TEM), to accelerate the Li+ diffusion and inhibit the growth of Li dendrites. Due to the interphases constructed by the PTA‐PP separator, the Li–S cells exhibit excellent long‐term cycling in which the capacity retention rate is more than 76% after 700 cycles at 0.5 C. The in situ elaborate modification strategy may provide insights into the high‐performance separator design to promote the potentially large‐scale applications of Li–S batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3