Effective SEI Formation via Phosphazene‐Based Electrolyte Additives for Stabilizing Silicon‐Based Lithium‐Ion Batteries

Author:

Ghaur Adjmal1,Peschel Christoph1,Dienwiebel Iris1,Haneke Lukas1,Du Leilei1,Profanter Laurin1,Gomez‐Martin Aurora1ORCID,Winter Martin12ORCID,Nowak Sascha1ORCID,Placke Tobias1ORCID

Affiliation:

1. MEET Battery Research Center Institute of Physical Chemistry University of Münster Corrensstr. 46 48149 Münster Germany

2. Helmholtz Institute Münster IEK‐12 Forschungszentrum Jülich GmbH Corrensstr. 46 48149 Münster Germany

Abstract

AbstractSilicon, as potential next‐generation anode material for high‐energy lithium‐ion batteries (LIBs), suffers from substantial volume changes during (dis)charging, resulting in continuous breakage and (re‐)formation of the solid electrolyte interphase (SEI), as well as from consumption of electrolyte and active lithium, which negatively impacts long‐term performance and prevents silicon‐rich anodes from practical application. In this work, fluorinated phosphazene compounds are investigated as electrolyte additives concerning their SEI‐forming ability for boosting the performance of silicon oxide (SiOx)‐based LIB cells. In detail, the electrochemical performance of NCM523 || SiOx/C pouch cells is studied, in combination with analyses regarding gas evolution properties, post‐mortem morphological changes of the anode electrode and the SEI, as well as possible electrolyte degradation. Introducing the dual‐additive approach in state‐of‐the‐art electrolytes leads to synergistic effects between fluoroethylene carbonate and hexafluorocyclotriphosphazene‐derivatives (HFPN), as well as enhanced electrochemical performance. The formation of a more effective SEI and increased electrolyte stabilization improves lifetime and results in an overall lower cell impedance. Furthermore, gas chromatography‐mass spectrometry measurements of the aged electrolyte with HFPN‐derivatives as an additive compound show suppressed ethylene carbonate and ethyl methyl carbonate decomposition, as well as reduced trans‐esterification and oligomerization products in the aged electrolyte.

Funder

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3