Affiliation:
1. Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
2. Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA
3. School of Mechanical Electrical and Information Engineering Shandong University Weihai 264209 P. R. China
Abstract
AbstractThe significant amount of gas bubbles generated during high‐rate alkaline water splitting (AWS) can be detrimental to the process. The accumulation of bubbles will block the active catalytic sites and hinder the ion and electrolyte diffusion, limiting the maximum current density. Furthermore, the detachment of large bubbles can also damage the electrode's surface layer. Here, a general strategy for facilitating bubble detachment is demonstrated by modifying the nickel electrode surface with nickel nanocone nanostructures, which turns the surface into underwater superaerophobic. Simulation and experimental data show that bubbles take a considerably shorter time to detach from the nanocone‐modified nickel foil than the unmodified foil. As a result, these bubbles also have a smaller detachment size and less chance for bubble coalescence. The nanocone‐modified electrodes, including nickel foil, nickel foam, and 3D‐printed nickel lattice, all show substantially reduced overpotentials at 1000 mA cm−2 compared to their pristine counterpart. The electrolyzer assembled with two nanocone‐modified nickel lattice electrodes retains >95% of the performance after testing at ≈900 mA cm−2 for 100 h. The surface NC structure is also well preserved. The findings offer an exciting and simple strategy for enhancing the bubble detachment and, thus, the electrode activity for high‐rate AWS.
Funder
U.S. Department of Energy
Lawrence Livermore National Laboratory
University of California, Santa Cruz
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献